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Abstract. An approach to the Ginzburg-Landau problem of superconducting polygons is developed, based
on the exact fulfillment of superconducting boundary conditions along the boundary of the sample. To
this end an analytical gauge transformation for the vector potential A is found which gives A, = 0
for the normal component along the boundary line of an arbitrary regular polygon. The use of the new
gauge reduces the Ginzburg-Landau problem of superconducting polygons in external magnetic fields to
an eigenvalue problem in a basis set of functions obeying Neumann boundary conditions. The advantages
of this approach, especially for low magnetic fields, are illustrated and novel vortex patterns are obtained

which can be probed experimentally.

PACS. 74.60.Ec Mixed state, critical fields, and surface sheath — 74.25.Dw Superconductivity phase
diagrams — 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)

1 Introduction

Recent progress in microfabrication techniques makes it
possible to investigate mesoscopic superconducting sam-
ples with sizes smaller than the coherence length and the
penetration depth [1]. The new qualitative feature arising
at the mesoscopic scale is the strong effect that the bound-
ary geometry has on the nucleation of superconductivity
in the samples. The theoretical description of the super-
conductivity in applied magnetic field requires the solution
of the Ginzburg-Landau equations [2] with the boundary
conditions imposed on the superconducting order param-
eter ¢ at the superconductor/vacuum interface:

(mv - %A> "
C

where A is the vector potential corresponding to the mag-
netic field.

The presence of the vector potential in the boundary
condition, equation (1), seriously complicates the solution
of the Ginzburg-Landau equations for samples of arbitrary
geometry. Existing treatments use numerical methods like
the method of finite differences [3,4]. However the problem
can be viewed from a different perspective if one can find
a gauge for the vector potential which gives A,, = 0 for the
normal component along the boundary line. In these cases
the superconducting boundary condition in equation (1)

=0, (1)
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Fig. 1. Domains (bold dots and lines) of the boundary line
where the condition in equation (1) is satisfied exactly for
the case of finite grid (a) and appropriate vector potential
gauge (b) methods.

reduces to the Neumann boundary condition, V|, = 0,
which is much easier to satisfy. Such a choice of the gauge
has been achieved till now only for infinite slabs [5], semi-
planes with a wedge [6,7], and disks [8-11].

The major difference between the above approaches is
the extent to which they fulfil the superconducting bound-
ary condition. As Figure 1 shows, the method of finite
differences satisfies equation (1) only on a finite set of
points on the boundary line, while by using an appropri-
ate gauge for the vector potential we are able to satisfy
the boundary condition everywhere on the boundary. Since
equation (1) is nothing but a sort of quantization con-
dition for our problem, we can conclude that finite grid
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methods always imply an approzrimate solution of equa-
tion (1), while the methods using the appropriate gauge
for the vector potential treat it exactly. This is crucial for
the proper description of the order parameter in the cases
when the boundary becomes important, i.e. for low values
of the applied flux.

In this paper we develop this second type of approach
to the Ginzburg-Landau problem for regular supercon-
ducting polygons in external magnetic field. For these ge-
ometries, an analytical gauge transformation for the vec-
tor potential of a homogeneous magnetic field yielding
A,, = 0 on the boundary line of arbitrary regular polygons
is found. Vector potential is assumed to originate uniquely
from the applied field. This approach is valid in the cases
when the screening effect of the induced supercurrents
can be neglected. In macroscopic superconductors this
criterion is only fulfilled close to the phase boundary for
the nucleation of superconductivity, while in mesoscopic
superconductors it is satisfied in a wide range of temper-
atures and fields if the samples are thin enough [12]. The
advantages of the developed approach are illustrated for
the solution of the linearized Ginzburg-Landau equation
in a square. It has already been successfully applied to
the description of the nucleation of superconductivity in
mesoscopic squares and triangles [13,14] which are started
to be fabricated and investigated experimentally [15].

2 General approach

Consider a regular polygon with N edges. It has a symme-
try axis of order N, corresponding to rotations by angles
which are multiples of 27r/N. An external homogeneous
magnetic field applied along this axis can be described by
a vector potential

A:%er, (2)

where the radius-vector lies in the xy plane (Fig. 2) and
H || z. Equation (2) defines the cylindrical gauge for A.
It is often preferred over many other possible choices [16]
due to the high symmetry which allows to preserve the
rotational symmetry of the system without field. The di-
rection of A is tangential to concentric circumferences,
A || ey, which are also equipotential lines for the vector
potential.

As one can see from Figure 2, the vector potential in
equation (2) is not tangential to the boundary line (i.e.
the edges) of a polygon. On the edge shown in Figure 2 it
contains a normal component

An(p) = —Ctangp,
C- iH a, (3)

where ¢ is the polar angle and «a is the diameter of the cir-
cumference inscribed in the regular polygon. Our purpose
is to find a new vector potential which would be tangen-
tial to the edges. This can be done by the following gauge
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Fig. 2. Piece of a regular polygon containing one edge (thick
line). The origin of the coordinate system is chosen in the centre
of the polygon. n is the unit vector normal to the edge. er and
e, are unit vectors of the cylindrical coordinate system. The z
axis coincides with the N fold rotational axis of the polygon.

transformation [16]:
A=A+VS, (4)

where A is the old and A is the new vector potential and
S is an arbitrary scalar function. This function is found
from the condition A,, = 0 on the boundary line. This is
equivalent to the equation

A = —V,.8, (5)

which has to be obeyed on each edge. In order to keep
the rotational symmetry of the regular polygon A and
S should be periodic functions of ¢ with the period «
(Fig. 2). Because A is real, this suggests the following
general form for S (in polar coordinates):

S(r,0) = 3 [R2,(r) sin (Nmig) + RS, (1) cos (Nmig)]
" (6)

where m are non-negative integers. Due to the rotational
periodicity of the function S it is enough to satisfy equa-
tion (5) on one single edge. The form in equation (6) is fur-
ther simplified due to the symmetry requirement that A is
purely tangential on the radial lines defined by ¢ = +a/2
and ¢ = 0 (Fig. 2). The latter requirement means that V.S
is purely tangential on the radial line ¢ = 0 which can only
be the case if one takes RS (r) = 0 in equation (6).

Next we simplify the remaining part of the form (6)
by confining ourselves to one single term in the summa-
tion. Obviously this cannot be the term m = 0 because
VS should be dependent on ¢ as it is easily seen from
equations (3, 5). Therefore the simplest possible term is
m = 1 which leads to the ansatz:

Sn(r,p) = Ry(r)sin(Ny). (7)

Substituting equations (7, 3) into (5), after eliminating
the r variable on the edge line:

a

- 2cosp’
g 2cos?p O

or  a sing 0y’




L.F. Chibotaru et al.: Vector potential gauge for superconducting regular polygons

one obtains the following equation in ¢:
R;\, sin (Ng) cos? o — Ry sin (Ncp)/ sin? ¢ = tan® ¢, (9)

where the prime in the superscript means the first deriva-
tive after ¢ and the following notation was introduced:

Rn(g) = =Ry ( “ (10)

aC 2cosg0> .

Bringing equation (9) to the form

Ry +&(@)Ry = (), (11)

where

£(p) = —N cot (Ng) tan? ¢,

1(p) = csc (Ny) tan? v/ cos? ©, (12)

allows us to write down the general solution [17]:

Ry(p) = ﬁ [/n(sﬁ)u(sﬁ)dw + Clj| :

o) = oo | [ e(na). (13)

The solution (13) describes the radial function in equa-
tion (7) only for values of r which are radius vectors of
the points on the edge’s line. One can extend this solution
over the whole range of r by the inverse transformation
to (8), a/2cosp — r. Then using again equations (10, 7)
and (4) we can express the polar components of the gauge
transformed vector potential A,

~ _»aRN(ﬂ .

A, = Gy Sin (Ny),

- 1 N

Ap = gHr+ By (r)cos (), (14)

through the solution (13). The constant C; contained in
that solution should be chosen in such a way as to pro-
vide nondivergent components of the vector potential (14).
In contrast to A in equation (2), the vector potential de-
fined by equations (14) does not obey the Coulomb gauge,
V - A = 0. Hence the term V - A plays the role of a scalar
potential in an Hamiltonian and should be nondivergent
either. Fortunately both requirements are met within the
area of the polygon under the simple condition Cy = 0.

The general solutions (13) for polygons with odd and
even vertices are further specified in the Appendix, to-
gether with analytical expressions for some particular
cases of small N’s.

3 Application to the Ginzburg-Landau
problem

The analytical results for the gauge transformed vector
potentials can be used directly in the Ginzburg-Landau
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Fig. 3. Vector potential for the square (arbitrary units) after
the gauge transformation, described by equations (A.13).

equations [2] describing regular superconducting poly-
gons. In the case of square geometry the components A,
and A, are given by the formulae (A.13), and Figure 3
shows an arrow representation of the resulting vector po-
tential. As can be seen from this figure the vector poten-
tial in the central region has approximate cylindrical sym-
metry, corresponding to A in equation (2). It smoothly
changes into a square symmetry pattern when approach-
ing the boundary. Although A becomes tangential to the
edges, they do not correspond to equipotential lines. Ac-
tually the vector potential reaches its maximal value in
the middle of the edges (|A| = Ha/2) and is minimal in
the corners (A = 0). These features are common to other
polygons as well.

The solutions for the square can be classified after ir-
reducible representations (irreps) A, B, E; and E_ of the
symmetry group Cy of the problem [18]. It turned out
that a convenient basis set for the calculations is provided
by eigenfunctions of the particle in a square box problem
obeying Neumann boundary conditions [13]. For each ir-
rep, the Hamiltonian matrix is set up within a restricted
basis set of these functions, of the given symmetry and
corresponding to the lowest energy levels of the zero-field
problem. The resulting lowest “eigenvalue” describes the
T — H phase boundary for the nucleation of superconduc-
tivity, while the lowest “eigenfunction”, ¥, corresponds to
the order parameter at this phase boundary.

As an example, we further analyse the solution of the
linearised Ginsburg-Landau equation for a superconduct-
ing square in an applied magnetic field generating the
total flux @ = 5.59(, where @ is the superconducting
flux quantum [2]. The stable region on the phase diagram
corresponds to vorticity L = 3, E_ symmetry of the or-
der parameter, and the vortex structure [19] is charac-
terized by one ®gp-antivortex in the centre and four &q-
vortices symmetrically dispatched along the diagonals of
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Fig. 4. Order parameter plots corresponding to the solution of linearized Ginzburg-Landau equation for a square with gauge
transformed vector potential as in equations (A.13) (the order parameter is normalized to unity). The contour plot (a) shows
(in logarithmic scale) the vortex pattern in the central region of the square zoomed in eight times after convergence with respect
to the basis set size was achieved. The pannel (b) displays the cross section in the diagonal direction (p = 0 is the centre of the
square) for different numbers of basis basis functions used in the calculations: N, = 9 (dotted), 36 (dashed) and 256 (solid) —

the value at which convergence was achieved.

the square [13]. As Figure 4 shows, these “diagonal” vor-
tices are shifted from the central position by an amount
smaller than 2 percents of the square edge. If one uses
a numerical technique with a lower resolution, the four
vortices and the single antivortex would appear as one
3Py-giant vortex. Interestingly, the fine details of the or-
der parameter structure are well reproduced already in a
quite small basis set comprising the nine lowest functions
of symmetry E_. Indeed, it follows from Figure 4b that
the positions of the “diagonal” vortices resulting from the
calculation with nine basis functions differ by only 12 per-
cents from the “exact” values obtained in a calculation
with 256 basis functions which reached the convergence
after the basis set size.

Though the problem of measurability of the separate
vortices in the obtained vortex pattern will be given due
consideration elsewhere [20], we stress here that these vor-
tices are not an artifact of the calculation. This is con-
firmed by the fast convergence of the solution with increas-
ing basis set (Fig. 4b). The predicted novel vortex patterns
(as, for example, in Fig. 4a) are found in the framework of
the linearized Ginzburg-Landau equation, which is valid
only quite close to the T.(H) phase boundary. In our cal-
culations we have also used the local magnetic fields b(r)
coinciding with the applied field. Therefore for the ex-
perimental verification of the new symmetry consistent
vortex patterns close to T,.(H ), one should use such tech-
niques which are sensible to the superfluid density, i.e. to
|¥|2, rather than to the variations in b(r). The former
can be probed, for example, by using scanning tunneling
microscopy.

It is worthwhile to compare the results in Figure 4 with
those given by the finite differences method in the same
region of field. In such calculations, the minima of the
order parameter in the directions of the diagonals of the

square only start to show up at a density of grid points not
less than 201 x 201 [21]. For such a density of the grid, the
matrix of the discretized Hamiltonian of dimension 40401
has to be diagonalized.

4 Conclusions

We have developed an approach to describe the supercon-
ductivity of mesoscopic regular polygons in homogeneous
magnetic field based on the exact fulfillment of the su-
perconducting boundary condition. To this end an ana-
lytical gauge transformation for the vector potential was
derived which gives a vanishing normal component of the
vector potential on the boundary line of any regular poly-
gon. This transformation eliminates the vector potential
from the boundary condition in equation (1). As a result
the corresponding Ginzburg-Landau problem reduces to
an eigenvalue equation in a basis set of functions obeying
Neumann boundary conditions, which can be found for
different regular polygons. The resulting slowly varying
vector potential which is of the same order of magnitude
as the initial, cylindrical gauge, allows one to use small
basis sets for this eigenvalue problem as we have demon-
strated for the solutions of the linear Ginzburg-Landau
equations in a square (Fig. 4). In the field regions corre-
sponding to several flux quanta, a satisfactory solution for
the order parameter is obtained already with a basis set
of 10 functions.

The main area of application of the above approach
is expected to be the description of superconductivity
in polygon-shaped mesoscopic samples in applied homo-
geneous magnetic fields. This is an important issue for
physics of Josephson junctions [23] where different super-
conducting elements with a characteristic size in the range
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of 1-10 pum are used. The achieved continuous description
of the order parameter permits to calculate correctly the
spatial changes of its phase gradient and to treat any re-
gions of a superconductor no matter how small they are,
and irrespective of the level of accuracy of the calcula-
tions. As a result new vortex patterns could be found in
superconducting regular polygons displaying an antivor-
tex in the centre of the polygon for some values of applied
flux [13,14]. These can be probed by scanning tunneling
microscopy.

The proposed vector potential gauge can also be used
for the calculation of the magnetic response of type-II su-
perconductors in realistic geometries [24] under the influ-
ence of the edge barrier.

Besides the superconductor/vacuum boundary condi-
tions considered here, our approach can also be generalized
to superconductor/metal-like boundaries.

We are grateful to V.V. Kabanov and J. Bonca for sharing
with us the results of their calculations. This work is supported
by the Flemish FWO, GOA, the Belgian IUAP and the ESF
VORTEX Programmes.

Appendix

For the cases of small N we derive explicit expressions
for (14). To this end the trigonometric functions of Ny
in the definition of £ and 7 in (12) are decomposed in
powers of trigonometric functions of ¢. With these de-
compositions, equation (11) can be shown to depend only
on cos ¢ for any N. The further procedure differs for even
and odd N.

A.1 Odd N solutions

Introducing the new variable

v = cos (A1)
transforms equations (11, 12) into
OR .
N b el0) e = (o), (A2
v
and
&o(v) =

N— 2 _ _
N S VR D) S (C D) (N R

N—-1)/2 l _ 1’
U (1) (o) Shmo(— 1) () uN 22k

1
No(v) = A
1
(N—1)/2 N 1 N, N— 1
1=0 / (*1)1(21-}1) D ko (—1)F () oN 22k

(A.3)
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In this way the functions &, and 7, become ratios of poly-
nomials of order N — 1. The solutions of equation (A.2)
are similar to (13):

~ 1
B(o) =20y

o) = exp | [ eatwyas]

[ ntoputerae,

(A4)

A.1.1 Equilateral triangle

Substituting N = 3 in equations (A.3) gives the following
expressions for the solution (A.4):

09
[,L(’U) - (_1 +4’U2)3’
- 1 — 1202 + 48v*
R: = A5
3(v) 38409 (A-5)
Passing to r in the last equation via the transformation
v — a/2r one obtains for the components of A in (14):

~ 2
A, = ;Ha (97"’8 -4 gr’4> sin 3¢,
- 1 81 1
A,=-Hr+ —Ha (7"'8 —0 4 —r'4) cos 3¢,
2 2 3
' =r/V3a. (A.6)
A.1.2 Regular pentagon
In the case N = 5 the polynomials in r.h.s. of equa-

tions (A.3) are of the fourth order. The solution for Rs
is obtained in the form of one single integral:

(3 - 8v2) 1(30-17v5)

o) = o
1(30+17V5)
x (=3+ 5+ 80?) ,
5 1 p(v)
=— dv. A.
Bs(v) w(v) / v4(160v% — 1202 + 1) v (A7)

A.2 Even N solutions

In the case of even N’s the expressions in equation (A.3)
can further be simplified. Indeed, introducing the variable

u=1/cos? g, (A.8)
transforms equations (11, 12) into
OR .
g TRy =ne(w), (A.9)

ou
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and
e =~ T (D' G) S (D
2u Z;i/OQ_l(*l)l (2511) ZL:O(*l)k (Ilc) ut=k )
uN/2
ne(u): N/2—=1, \i( N l k(! l—k.
232 (=1 (25+1) > k=o(—=1) (k)“

(A.10)
The highest order of polynomials involved in the above

equations is N/2 — 1. The solution for Ry looks similar
to the previous ones in equation (13), (A.4):

~ 1
Ry(u) = m /ne(u),u(u)du,

1) = exp [ / fe(u)du} (A.11)

A.2.1 Square

Substituting N = 4 in equations (A.10) gives the follow-
ing expressions for the solution (A.11):

/2
() = Eu—2)
Ra(u) = %uQ [1 + (1 - %) el —v/2 R (g - 1)} . (A12)

where Fi(x) is the exponential integral function [22].
Passing to r in this equation via the transformation
u — (2r/a)? gives for the gauge transformed vector

potential (14):
- 1 .
A, = ———Ha(1 + 2)*/?
a0 +2)
x [-1+z+ (1+2z—2%) e *Ei(2)] sinde,
A, = lH?“ + LHa(l + 2)%2[1 — ze *Ei(z)] cos 4¢,
2 2V2
z=2(r/a)* — 1. (A.13)
A.2.2 Regular hexagon
In the case N = 6 the polynomials in r.h.s. of equa-

tions (A.10) are of the third order. The solution for Rg
is obtained in the form of one single integral:

eu/2

W) = S = D (Bu = 1)1

- 1 w(u)u?
Bs(w) = 5,0 / 52— 82u+ 6u2 (A4.14)
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